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Using the density functional theory calculations, the nature
of the effects of electron-donating substituents on pseudopericy-
clic ring-opening reactions of oxazole derivatives have been
explained. The reactions involve interactions in two kinds of
orthogonal �-systems at the transition states. A 2-amino group
interacts with a horizontal �-system at the transition state, while
a 5-alkoxy group interacts with a vertical one. Owing to these
substituent effects, the barrier of the ring-opening reactions are
reduced cumulatively.

A ring-opening reaction of oxazole derivative 1 into carbon-
yl nitrile ylide 3 is a key step of the transformation of an oxazole
ring in the Cornforth rearrangement and some of non-Diels–
Alder type cycloadditions (Figure 1).1–4

Formation of nitrile ylide 3 was confirmed by trapping with
dipolarophiles, and semiempirical molecular orbital calculations
by Saalfrank et al.3 and Fukushima et al.4 in reactions of 4-
cyano-5-methoxy-2-pyrrolidinooxazole (R1 ¼ NR2, R2 ¼ CN,
R3 ¼ OR0) and 5-alkoxy-2-aminooxazoles (R1 ¼ NR2, R3 ¼
OR0). These oxazole derivatives 1 have both an amino group
(R1 ¼ NR2) and an alkoxy group (R3 ¼ OR0). Attempts to
generate nitrile ylide 3 from oxazole derivatives which has only
an amino group (R1 ¼ NR2) or an alkoxy group (R3 ¼ OR0)
were unsuccessful.4 These experimental results indicate that
the substituent effects by both the amino group (R1) and the
alkoxy group (R3) are essential for the ring-opening reactions
of the oxazole derivatives 1. However, the mechanism of the
substituent effects on the ring-opening reactions of the oxazoles
1 was not fully understood.

Recently, some groups reported that a reaction of formyl
nitrile ylide (3a) to oxazole (1a) was theoretically categorized
into a pseudopericyclic reaction which is a concerted reaction
involving simultaneous interactions on two kinds of orthogonal
�-systems (Figure 2).5,8–10

One of the �-systems consists of vertical �-orbitals on a
nitrile ylide moiety and a carbonyl group, and is delocalized over
the whole molecule at the transition state (depicted in blue,
Figure 2). The other �-system consists of a horizontal �-orbital
at C1–N2 in the nitrile ylide moiety and lone-pair electrons on
carbonyl oxygen (depicted in green, Figure 2). The interaction
in the latter �-system directly contribute to formation of a new
C1–O5 �-bond during ring-closure process.

In this paper, we will report density functional theory (DFT)
calculations11,12 and the natural bond orbital (NBO) analysis13 of
substituent effects on pseudopericyclic ring-opening reactions of
oxazole derivatives 1. The DFT calculations have revealed
that an amino group (R1 ¼ NR2) and an alkoxy group (R3 ¼
OR0) reduce barrier of the reactions through interaction with
different �-systems at the transition states 2.

Figure 3 shows calculated energy profiles of ring-opening
reactions from oxazole 1 to nitrile ylide 3. A ring-opening reac-
tion from unsubstituted oxazole (1a) to formyl nitrile ylide (3a)
was exothermic by 41.5 kcal mol�1. Although the barrier for the
reaction (46.4 kcalmol�1) was rather high, introduction of an
electron-donating group at R1 and/or R3 reduced it. In monosub-
stituted derivatives 1b and 1c, an effect of a dimethylamino
group (R1) and that of a methoxy group (R3) reduced barriers
to the reactions by more than 10 kcalmol�1. Barriers for the
reactions of di- and trisubstituted derivatives, 1d and 1e,
which are model compounds of 5-alkoxy-2-aminooxazoles and
4-cyano-5-methoxy-2-pyrrolidinooxazole, were cumulatively
reduced by both the dimethylamino group (R1) and the methoxy
group (R3). The calculated low barriers (22.2 and 18.8
kcal mol�1) are consistent with experimentally observed easy
generation of nitrile ylide 3.3,4

Figure 4 illustrates optimized geometries, the lowest fre-
quencies, and the summary of the NBO analysis13 of transition
states 2b (R1 = N(CH3)2) and 2c (R3 ¼ OCH3).

14 It shows
two different types of substituent effect. At the transition state
2b, C1 became electron-deficient with breaking of a C1–O5
bond. Electron-donation from lone-pair electrons of a dimethyl-
amino group (R1) to the electron-deficient orbital on C1 stabi-
lized 2b. The interaction was strong enough to be represented
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Figure 1. Ring-opening reaction from oxazole 1 to nitrile ylide 3.
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Figure 2. Electronic interactions in a vertical (blue) and a hori-
zontal (green) �-systems at transition state (2a).
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Figure 3. Energy profile of ring-opening reaction from oxazole
1 to nitrile ylide 3 calculated at the B3LYP/6-31+G(d) level of
theory. Energies are relative to those of oxazole (1).
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as a C=N double bond, which was conjugated with lone-pair
electrons on N2 (nN2), by the NBO analysis. The conjugated
�-bond character was confirmed by geometrical features of
2b; a 1.310 Å of (H3C)2N–C1 distance, which is slightly shorter
than that of an imidazole (1.333 Å), and almost orthogonal
dihedral angles (80.4 and 88.3�) between H3C–N bonds and an
N2–C3 bond, which allowed effective overlap between the
�C1–N(R1) and the nN2 within a horizontal mean molecular
plane. The transition state 2c was almost planar except for some
hydrogen atoms. The NBO analysis showed that vertical �-
orbitals in a nitrile ylide moiety and a carbonyl group were
conjugated over the whole molecule. Lone-pair electrons on a
methoxy group [nO(R3)] interacted with the vertical �-system,
which stabilized the transition state 2c.

Table 1 lists the second-order perturbative energy-lowerings
through electron-donating interaction from nO(R3) to ��C4–O5
at 2c–2e. Figure 5 illustrates the interactions between donor and
accepter NBOs at 2d and 2e. In these transition states, 2c has on-
ly a methoxy group (R3), while 2d and 2e have both a dimethyl-
amino group (R1) and the methoxy group (R3). The data in
Table 1 indicated that there was little influence of R1 on the mag-
nitude of the electron-donating interaction between R3 and
��C4–O5 orbital at 2d and 2e. Table 1 and Figure 5 show that
the electron-donating interactions from R1 and those of R3 are
orthogonal in 2d and 2e, and are substantially independent to
each other.

A substituent (R1 or R3) on oxazole ring reduced barrier
of the reaction by about 10 kcal mol�1 as shown in Figure 3.
Multiple substituents (R1 and R3) stabilized the transition states
(2d and 2e) by about 20 kcal mol�1. Thus, the effects of the R1

and R3 cumulatively reduce the barriers of the reactions.
In conclusion, a dimethylamino group (R1) and a methoxy

group (R3) independently interact with a horizontal and a
vertical �-systems in transition states of pseudopericyclic
ring-opening reactions of oxazole derivatives 1. The cumulative
reductions of the energy-barriers through these interactions are
essential for the experimentally observed formation of nitrile
ylide 3 from oxazole derivatives 1.
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Figure 4. Optimized geometries and the lowest frequencies (top),
and the second-order perturbative energy-lowering (kcalmol�1)
between donor/acceptor NBOs (bottom) at transition states 2b
and 2c.

Table 1. The second-order perturbative energy-lowerings
(kcalmol�1) through electron-donating interaction from nO(R3)
to ��C4–O5 at 2c–2e.
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Figure 5. The second-order perturbative energy-lowering
(kcalmol�1) between donor/acceptor NBOs at transition states
2d and 2e.
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